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Let X be a Banach space and Y a finite-dimensional subspace of X. Let P be a
minimal projection of X onto Y. It is shown (Theorem 1.1) that under certain con
ditions there exist sequences of finite-dimensional "approximating subspaces" X m

and Ym of X with corresponding minimal projections Pm: Xm ---> Ym' such that
limm~ro IIPml1 = IIPII. Moreover, a certain related sequence of projections
i m0 Pm 0 Te m: X ---> Y has cluster points in the strong operator topology, each of
which is a minimal projection of X onto Y. When X = C[a, b] the result reduces to
a theorem of Cheney and Morris ("The Numerical Determination of Projection
Constants," Report No. 75, Center for Numerical Analysis, The University of Texas
at Austin, 1973). It is shown (Corollary 1.11) that the hypothesis of Theorem 1.1
holds in many important Banach spaces, including C[a, b], £P[a, b] and IP for
I,;;; P < 00, and co, the space of sequences converging to zero in the sup norm.
.[) 1985 Al.-ademic Press, Inc.

O. PRELIMINARIES

Let X be a Banach space and let Y be a fixed subspace of X. A linear
operator P: X -+ Y will be called a projection of X onto Y if Py = y, for all
yE Y.

A projection P will be called a minimal projection of X onto Y if the
operator norm of P is less than or equal to the operator norm of any other
projection Q from X onto Y. That is, P is a minimal projection of X onto Y
if

IIPII~IIQII for all Q E q)I(X, Y),

* The results of this paper are based on a University of California (at Riverside) Ph.D. dis
sertation under the direction of Professor Bruce L. Chalmers.
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where
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II Til = sup II Txll,
XEX

Ilxll = 1
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and &'(X, Y)= {Q:Q is a projection from X onto Y}. Similarly, a co
minimal projection from X onto Yis any projection PcE&'(X, Y) such that

II I - Pc II ~ II 1- Q II for all QE &'(X, Y),

where I: X -+ X is the identity operator.
In what follows we will often use the fact that if Y is a finite-dimensional

subspace of X, then a minimal projection from X onto Y always exists
(Morris and Cheney [15 J). On the other hand, minimal projections are
not always unique. No uniqueness results will be assumed or needed in this
paper.

It should also be mentioned that in some important cases minimal and
co-minimal projections coincide. For example, Daugavet [8J has shown
that for a compact operator T on C[a, bJ (the continuous real-valued
functions on the interval [a, bJ) we have

11/- Til = 1+ IITII· (1)

If Y is finite dimensional, Eq. (1) implies that minimal and co-minimal pro
jections are the same. Recently, Babenko and Pichugov [IJ have shown
that (1) holds for the compact operators on L 1(0, 1). (Incidentally, this last
result shows that the minimal projection of L 1 onto the span of 1 and x
given in [9J is also co-minimal.)

In addition to the notation defined above we introduce the following: X,
Y, Z and Ware always Banach spaces and Y is often a finite-dimensional
subspace of X. The identity map is denoted by I. Define the boundary of
the unit ball in X, iJ U(X) = {x EX: II x II = 1}. The set of all bounded linear
operators from a Banach space X into a Banach space Y will be denoted by
9l(X, Y). The notation .1l(X, X) is shortened to .1l(X). No spcial sub
scripting on the norm symbol will be used to distinguish the norms in
various spaces or the restriction of a norm to a subspace. Definitions and
terminology relating to nets will be those found in Kelly [14]. If Q is a set,
IQI is the cardinality of Q, and ¢J will denote the empty set. The natural
numbers will be denoted by N.
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1. GENERALIZED DISCRETIZATION IN BANACH SPACES

In this section we develop a technique for computing minimal projec
tions and show that it is applicable to many important Banach spaces,
including C[a,b], U[a,b] and IP for l~p<oo, and Co, the space of
sequences convergent to zero in the sup norm. This technique may be
roughly described as a generalized process of discretization. Given a
minimal projection P: X -+ Y of X onto Y, the idea is to construct a
sequence of "approximating subspaces" Xm and Ym' with corresponding
minimal projections Pm: Xm-+ Ym' in such a way that the sequence {Pm}
"converges" to P. An exact sense in which this construction may be carried
out is contained in Theorem 1.1. The structure of the theorem is motivated
by the following example. Let X =C[a, b], the continuous real-valued
functions on [a, b], with Y a finite-dimensional subspace of X, and let
{Qm: mEN} be a sequence of finite point-sets of [a, b] such that UQm is
dense in [a, b]. Let 1tm : C[G, b] -+ C[a, b] be the map defined by
"piecewise-linear interpolation" at the points of Qm' That is, define 1t,J in
[t i , t;+ I] by

We may then define Xm=1tm(X), and Ym= 1tm(Y). Thus, when X=, C[a, b]
a sequence of finite-dimensional approximating subspaces Xm and Ym

arises, each consisting of piecewise-linear continuous functions on [a, b]. It
seems natural to try to gain information about P from the sequence of
minimal projections Pm: Xm-+ Ym' This is what is done in the theorem
with the specifics of this example replaced by more general conditions. We
state the theorem first, deferring the proof until several lemmas have been
established.

THEOREM 1.1. Let X be an arbitrary real or 'complex Banach space, with
Y an n-dimensional subspace of X and P a minimal projection from X onto Y.
For each mEN let 1tm : X-+X

X -----L. Y

"m1 r("ml y)-I

X m --p;;;-+ Ym

(not commutative)

be a norm 1 projection of X onto X m = 1tm (X) such that 1tm X -+ X as m -+ 00

for each fixed XEX, and Pm a minimal projection of X m onto Ym=1tm(Y).
Then for all sufficiently large m, (1t m l y)-I exists and
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(a) 1I(1tml y)- l oPm°1tmll--+ IIPII and IIPmll--+ IIPII as m--+ 00;

(b) the sequence ofprojections {(1tml y)-l oPm°1tm} of X onto Y has
cluster points in the strong operator topology and each of these is a minimal
projection of X onto Y. If X is separable, then some subsequence converges in
the strong operator topology to a minimal projection of X onto Y.

Remark. Both Xm and Ym are Banach spaces with the norm inherited
from X, but for different reasons. The range of a bounded projection is a
closed subspace, so X m is a Banach space. As for Ym , the linear map 1tm l Y
cannot increase dimension and so Ym is a finite-dimensional subspace of X,
and hence a Banach space. Note that 1tmIY is not, in general, a projection
from Y onto Ym' Generally speaking, Ym is not a subset of Y.

PROPOSITION 1.2. Let Z and W be Banach spaces with Z finite dimen
sional. For each mEN let TmE!!l(Z, W). Iflimm~C<J II Tmzll =ofor all ZEZ,

then limm~ C<J II Tmll = O.

Proof By the principle of uniform boundedness liTmil < M for all m.
Since oU(Z) is compact, given 6>0 there are ZI,.", ZkEOU(Z) such that for
any ZEOU(Z) we have IIz-zjll <6/2M for some 1~j~k. There exists no
such that if m ~ no, II Tmz; II < 6/2 for i = 1,..., k. Therefore if m ~ no and
ZEOU(Z), then

IITmzl1 ~ II Tm(z-zj)11 + II Tmzjll ~ IITmllllz-zjll +6/2<6.

PROPOSITION 1.3. Let W be a Banach space and for each mEN let
TmE!!l( W) be such that liTm- III --+ 0 as m --+ 00. Then for all sufficiently
large m, T;;, I exists and II T;;, I - III --+ O.

Proof Let Sm =1- Tm' Given 0 < 6 < 1 we can choose m large so that
that IISml1 < 6. By a well-known result,

T;;,I=(I-Sm)-l=I+Sm+S~+S~+ ....

That is, T;;, I - 1= Sm + S~ + S~ + "', where

C<J C<J 1
IIT;;"-III ~ L IIS~II ~ L IISmll k = 1-6 -1.

k=1 k~1

Therefore, II T;;, I - III --+ 0 as m -+ 00.

LEMMA 1.4. Referring to Theorem 1.1, each of the following holds for all
sufficiently large m:
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(a) PI Ym is invertible;

(b) nm IY is invertible.

Moreover,

(c) II(nmlY)-l o(PIYm)-111-1,asm-oo,

Proof By hypothesis, for each Y E Y, (n m I Y)( y) - y as m - 00, Since P
is continuous P((nm1 Y)( y)) - Py = Y as m - 00. Therefore, for all y E Y,

as m - 00,

Note that

Therefore, by Proposition 1.2 with Z = Yand W = Y,

as m - 00.

Since [(P IYm) 0 (nmIY)] E.1S'( Y), by Proposition 1.3 [(P IYm) 0 (nmIY)] - I

exists for all sufficiently large m and

as m - 00. (2)

Therefore, [(PI Ym)o(nml Y)] is one-to-one and onto. By a well-known
result nmIY: Y - Ymmust be one-to-one and PlYm: Ym- Y must be onto.
Since Y and Ym are finite-dimensional spaces it follows that nmIY and
PIYm are both invertible. Therefore, [(PIYm)o(nmly)]-I=
(nmIY) -1 0 (P IYm) -1 implies that II (n mI Y) -1 0 (P IYm) -III -t 1 as m -+ 00,

DEFINITION 1.5. Referring to Theorem 1.1, we define f'm: Ym - Y by
f'", = (n m 1 Y) -I and assume without loss of generality that the nm have
been re-indexed if necessary so that f'", is defined for m = 1, 2,....

The next few pages will be devoted to showing that Ilf'",11 -+ 1 as m -t 00.

It might seem that this should be immediate by:

(a) II(nm IY) Y - YII -+ 0 as m -+ 00. Then by Proposition 1.2 we have

(b) IinmI Y - II YII -+ 0 as m -t 00. By Proposition 1.3 it follows that

(c) II(nml Y)-I-/I YII-tO as m - 00, i.e" Ilf'",-/1 YII-O as m - 00

so that Ilf'mll -+ 1 as m -t 00.

The problem is that (c) does not follow from (b) by Proposition 1.3,
because the range of 1tm I Y is not, in general, a subset of Y. The proof of
Proposition 1.3 relies heavily on this fact. Moreover, there does not seem to
be any way of making this argument work by extending the definition of
the maps involved or by extending ranges or domains.
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Before continuing, some definitions are needed.
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DEFINITION 1.6. A linear operator T E !JI(Z, W) is said to be bounded
below if there exists a constant M> 0 such that II Tzil ~ M for all z E oU(Z).
If T is bounded below we denote the greatest lower bound of T by glb( T).

PROPOSITION 1.7. Let Z and W be arbitrary Banach spaces with
T E fdI(Z, W). If T is one-to-one and Z is finite dimensional, then T is boun
ded below.

Proof Since Z is finite dimensional, oU(Z) is compact and so the con
tinuous function II Tzil assumesits infimum at some point Zo E oU(Z), i.e.,

glb(T) = II Tzo II,

Now T is one-to-one so II TZol1 #- O.

II Zo II = 1.

PROPOSITION 1.8. Let Z and W be arbitrary Banach spaces with
T E fdI( Z, W) invertible. Then T is bounded below by M if and only if
liT-III ~ l/M.

Proof The following statements are easily seen to be equivalent:

inf IITzl1 ~M>O (Mconst)
ZEOU(Z)

II Tzil ~Mlizil forall ZEZ

IIT(T- 1(w))11 ~MIIT-Iwll forall WE W

Ilwll ~MIIT-lwll forall WE W

II T- III ~ 1/M.

LEMMA 1.9. For the map i",: Y m --+ Y as defined in Definition 1.5 we
have that Ili",11 --+ 1 as m --+ 00.

Proof Since i;;; I is one-to-one, it is bounded below by Lemma 1.7 and
hence has a greatest lower bound. Let Cm = glb( i;;; 1). By Lemma 1.8
II imll ~ I/Cm • Since nm IY is the restriction of a norm 1 operator,
Iinm I YII ~ 1. This makes i m a norm-increasing map at each point of Ym so
that 1~ Ilimil ~ l/Cm. To prove the lemma it suffices to show that Cm--+ I
as m--+ 00. Note that Cm =infyEou(Y) II(nml Y)yll. Since II(nml Y)y- yll--+O
as m --+ 00, we have IInm IY - II YII --+ 0 as m --+ 00. Therefore, given 8> 0

lI(nm l Y)y-(II Y)yll ~ IInm l Y-II YII <8

holds uniformly for all y with II yll = 1, for all m sufficiently large. It follows
that Cm --+ 1 as m --+ 00.
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LEMMA 1.1O. Referring to Theorem 1.1, II (P IYm) - III -+ 1 as m -+ 00.

Proof Since (1r mIY) is the restriction of a norm 1 operator,
II1rmI YII ::;; 1. This makes t'm = (1r m I Y) -I a norm increasing map at each
point of Ym so that

II(PI ym)-III::;; Ilt'ma(PI ym)-III::;; Ilimllll(PI ym)-III· (3)

Recalling that llim a (P I Y) -III and llimll both approach 1 as m -+ 00 (Lem
mas 1.4 and 1.9, respectively), and letting m - 00 in the inequalities (3)
yields the result.

We proceed now to the proof of Theorem 1.1.

Proof of Theorem 1,1, Nate that (imapma1rm): X - Y is a projection of
X onto Y. Therefore,

Since II1r mll = 1 and Ilt'mll - 1 as m -+ 00, it follows that

(4)

We now wish to establish that lim liPmil::;; IIPII. For this, let Pm: X -+ Ym
be a minimal projection. Note that (P IYm) - I aP is a projection of X onto
Y m , By Lemma 1.10 II(PI y m)-III-l, as m- 00. Therefore,

liPmil::;; IIPmIXmll::;; liPmil::;; II(PI Ym)- aPII::;; IIPIIII(PI ym)-III (5)

where the first and third inequalities follow from the fact that Pm and Pm
are minimal projections and the second inequality follows because Pm IXm
is a restriction. Letting m - 00 in (5) we get

lim liPmil::;; IIPII·

Combining (4) and (6) yields

IIPII ::;;limllPmll ::;;limIIPmll::;; IIPII,

(6)

so that liPmil - IIPII as m -+ 00, From this it follows that
IlimaPm a1rmll - IIPII because

This completes the proof of part (a).
For the proof of part (b), a new topology is introduced for 91(X, Y),

where X and Yare as in Theorem 1.1. Since Y is finite-dimensional it is a
dual space, say z* = Y. Define the "weak*-operator topology" on
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a1(X, Z*) by spcifying that any net of operators T"Ea1(X, Z*) converges
to an operator T E a1(X, Z*) if and only if

(T"x, z) -+ (Tx, z) for all x E X, Z E Z.

We wi11 refer to the weak*-operator topology as simply the r-topology. It is
well known (for example, see Morris and Cheney [15J or Blatter and
Cheney [2J) that any subset of a1(X, Z*) which is norm-bounded and t
closed is t-compact. (A short discussion of other aspects of this topology
can be found in Holmes [3].)

Let Qm=~·moPmonm. By part (a) there is a constant M such that
IIQmll ~M for mEN. Define F= {QE&'(X, Y): IIQII ~M}. It is easy to
show that F is t-closed so that F is r-compact. Therefore, the sequence
{Qm} has a cluster point, say Qo, in F with some subnet of {Qm}' say
{Qm.}, converging to Qo. Since Z is reflexive, the fact that
I(Qm.x)z-(Qox)zl--+O for all x in X and all z in Z implies that
)z**(Qm.x)-z**(Qox)I--+O for all x in X and z** in Z**. That is,
{Qm.x} converges in the weak topology on Y to Qox for each x in X. Since
Y is finite dimensional {Qm.x} converges to Qox for every x in X in the
norm topology on Y. Therefore, Qo is a cluster point of the sequence {Qm}
in the topology of pointwise convergence on F. Since IIQol1 ::::; limllQmJ, Qo
is a minimal projection of X onto Y.

It should perhaps be remarked that {Qm} has a cluster point in F also
follows from Theorem 1, chapter 7 of [14].

If X is separable, then since F is an equicontinuous family on X and the
set F(x) has compact closure in Y for each x in X, by the Ascoli theorem
there is a subsequence of {Qm} which converges pointwise to a continuous
operator Qo. It is easy to see that Qo must be a minimal projection of X
onto Y.

COROLLARY 1.11. Let X and Y be as in Theorem 1.1. If X possesses a
monotone Schauder basis, then the hypothesis of Theorem 1.1 are met by
letting nm be the natural projection of X onto the span of the first m basis
elements.

Proof Let {b i : i EN} be the basis elements and let {iX i : i EN} be the
corresponding coordinate functionals. It is well known that if the basis {b i }

is monotone, then the natural projections, nm(x) = L~ 1 lXi(X )bi are each
norm one projections onto ltm(X). A little more generally, we could let
{km : mEN} be an increasing sequence of positive integers and define
nm(x) = L~= 1 lXi(x)bi·

Some spaces with a monotone basis are C[a, bJ, LP[a, bJ and lP for
1::::; p < 00, and co. These spaces are discussed in the next section in con
junction with applications of Theorem 1.1.
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Note that if Y has finite co-dimension and a co-minimal projection Pc
from X onto Y exists, then 1- Pc is a minimal projection from X onto the
null space of Pc. If the maps nm: X-Xm exist, then Theorem 1.1 is
applicable to I-Pc.

The problem of finding an analogue of Theorem 1.1 for co-minimal pro
jections of X onto Y when X is infinite dimensional and Y is finite dimen
sional is still open. Part of the difficulty is that 1- Pc has infinite-dimen
sional range in this case.

2. ApPLICAnONS

In this section we show how Theorem 1.1 can be used to calculate a
numerical approximation to P. For this, it is convenient to have some
stock examples of spaces with a monotone basis. All of these can be found
in Singer [18].

EXAMPLE 2.1. Let X = C[O, 1], the real-valued continuous functions on
[0,1]. Define xo(t) == 1, x/(t) = t,

=1

for

for

(
2/- 2 2/)

t~ 2k + 1 ' 2k + 1

2/-1
t = 2k + 1

[
2/-2 2/-1J

linear in 2k + 1 ' 2k + 1

and [
2/- I 21 J
2k + 1 '2 k + 1

(l= 1, 2, ... , 2k
; k=O, 1,2,3,... ).

From X2 on the basis may be thought of as a collection of "rooftop"
functions where the kth level consists of 2k rooftop functions, where the Ith
function has support on

[
2/-2 21 J
2k + 1 ' 2k + 1 •

For any f E CEO, 1] we have

00

f(t) = L iXi(f) x;(t)
i=Q
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where the (X,i are the coordinate functionals. If, for mEN we let
k m =2m

-
I +1 and define (1t m f)(t) =L~~o (X,i(f) x;(t); then 1tm f is the

piecewise-linear continuous function interpolating f at the points
ts = (s - 1)/2m

-
1
, s = 1, 2,..., km • Since the basis is monotone, II1tm II = 1 for

all m, and since the Xi are a basis 1tm f ~ f as m ~ 00.

EXAMPLE 2.2. Let X be real U[O, 1], 1~ p < 00. Define the normalized
Haar basis in U[O, 1] by

(/= 1, 2'00" 2k
; k=O, 1,2'00')'

For each X E U[O, 1] we may write

00

x(t) = L h;(x) Zjp)(t)
i=1

where h;(x)=j6x(s)Zjq)(s)ds for iEN and 1/p+l/q=1. For each
m = 1, 2'00' let k m =2m

-
I and define

km

(1t m x)(t) = L h;(x) Zjp)(t).
i~1

Now each 1tm X is a step function on equally spaced "steps" of length 1/2m
.

EXAMPLE 2.3. Let X be one of the real or complex sequence spaces /P
(1 ~ p < (0), or co-the space of sequences convergent to zero in the sup
norm. Let ~ = (~ 1, ~ 2 , ... ) be a general element of X. In each case define
1tm(~) = (~I ,..., ~m)' Then 1tm is a norm 1 projection onto its range and
1tm ~ ~ ~ as m -+ 00 for all (E X.

We now show how Theorem 1.1 can be used to calculate a numerical
approximation to P. By Theorem 1.1, m can be chosen sufficiently large so
that the norm of the projection em 0 Pm 0 1tm : X -+ Y is close to IIPII. Since e'm

and 1tm are known, the problem is to calculate Pm. To illustrate the
method, let X in Theorem 1.1 be CEO, 1J and let 1tm be as in Example 2.1.
Then Xm ( = 1tm(X» and Ym( = 1tm ( Y)) are both Banach spaces with the
norm inherited from X. Now X m consists of piecewise-linear functions with
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nodes at the points, say t h ..., tk of [0,1]. Therefore, any fEX rn may be
identified with the vector (f(t d, f(t 2 ), •• ·, f(tk))T. Defining IIfll co =

maxI <i<k If(tJI we note that Ilfllx= Ilfllco. Thus the correspondence

1r rn f <0> (f(tl), f(t 2 ),.·., f(td)T

is an isometric isomorphism of the Banach space X rn onto (R k
, II . II co),

Under this correspondence, Ym is an n-dimensional subspace of Rk, call it
Y~. The problem interpreted in this "new" space is to compute a minimal
projection Pm: R k -+ Y~, when R k is endowed with the infinity norm,
II . II co' It is well known that this norm induces the norm on matrix
operators given by the "maximum absolute row sum" when the elements of
Rk are expressed in the standard orthonormal basis. Thus, the problem is
to determine a matrix operator, say M n = (aij)' which is a projection from
Rk onto Y~, whose maximum absolute row sum, maxl"'i"'k{LJ~llaijl}, is
less than or equal to that of any other matrix which is a projection of R k

onto Y~. A numerical algorithm for solving the minimal (or co-minimal)
matrix projection problem when the operator norm is known is developed
in [16, Chap. 2].

The same strategy is followed when X = U[O, 1], 1~ p < 00. Here each
1r rn X is a step function, say 1rm X = L7= 1 CiXE;' where the Ei are k subinter
vals of [0, 1] of equal length, say A. Now

Thus the correspondence
k

1rm X= L CiXE;<O>(Ch C2"'" cdT
i~ 1

is an isometric isomorphism of the Banach space X m (with the norm
inherited from X) onto (Rk, Alip II . lip). The scale factor Alip plays no part
in determining the projection of least norm from R k onto yk because it
cancels out in the definition of the operator norm. Thus, we can perform
the minimization in the more standard space (R\ 11 . lip)' Unfortunately, the
induced matrix norm is unknown at this time except for the cases p = 1, 2,
and 00. If p = 1, the induced matrix norm in the standard orthonormal
basis is the "maximal absolute column sum," and if p = 00, it is the
"maximum absolute row sum." In these two cases, however, the numerical
work can be carried out completely. Some examples for these two cases are
given in the Appendix.
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Obviously, there is a limit beyond which it becomes impractical to
calculate Pm by numerical methods. It would be more fruitful to combine
the information gained from numerical techniques with some form for the
minimal projection. Recently, Chalmers [4, 5], and Chalmers and Metcalf
[3] have obtained very general results concerning the structure of minimal
projections from L(Q), 1~ p ~ 00, onto an n-dimensional subspace Y,
when Q is a compact T) space. The structure is expressed in terms of
equations in which appear (in a non-linear fashion) on the order of n 2

unknown constants. Thus, it is envisioned that it may be possible to use the
numerical computation of Pm (for sufficiently large m) to obtain
approximate starting values for the constants, after which a Newton's
iteration on the defining equations would yield an accurate numerical value
for the constants.

3. ApPENDIX

A computer program was written to demonstrate the feasibility of
numerically computing Pm. After making the isometric isomorphic iden
tification explained in the last section, the problem that remains is to find a
minimal projection, say P, of X = (Rn + k, II . II) onto a proper subspace Yof
dimension n. The algorithm used to numerically compute P is proved in
[16]. Briefly, the method is based on the fact that P(A) is the matrix (in
the standard orthonormal basis) of a projection of X onto Y if and only if

P(A)= VQ(A)V- I
,

where

[
I I A]

Q(A)= -~:-- ,
010

In is the n x n identity matrix, A is an n x k matrix and V is a fixed matrix
whose first n columns are a basis of Y (expressed in the standard orthonor
mal basis), with the remaining columns chosen so that V is non-singular.
Then P=P(Ao), where Ao is a matrix which minimizes IIP(A)II, where 11'/1
is the induced operator norm explained in the last section. Similarly, a co
minimal projection, say Pc, of X onto Y may be computed from the
equation.

III - Pell = min II VQAA) V-III,
A

640/43/4-2
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where
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[

0 I A ]
Qc(A)= --:-- .

o Ilk

Finally, it should be pointed out that the algorithm used to find the
minimal and co-minimal projections in Examples 3.2 and 3.3 had con
verged to at least five decimal places in all cases. In the process of con
verting from decimals to fractions, these matrices have become exact.

EXAMPLE 3.1. In [9] Franchetti and Cheney computed the minimal
projection, P, of L I [ - 1, 1] onto [1, x] (the span of 1 and x). They found
that IIPII = 1.22040.... Choosing 10 equally spaced points in the interval
[ -1, 1] and computing a minimal projection on these 10 points by the
method explained above yields a projection whose norm is II PII = 1.22302.
The convex minimization was over n x k = 2 x 8 real variables.

EXAMPLE 3.2. The points Q = {-1, -1/3, 1/3, I} in the interval
[ -'1, 1] were chosen and the minimal projection, P, onto [1, x, x2

] IQ in
the r<o norm was computed. The result is

P _ 1 ~ 1~ 1~ - ~ _ 3
3

1j
- 20 -3 9 11

1 - 3 3 19

II PilI''' = 1.3
The co-minimal projection, Pc> was found to be

~
7 3 -3 1 j
1 5 3-1

-1 3 5 1

1 -3 3 7

IIPcIIloo = 14/8 = 1.75. Note that the matrix I-Pc is given by

(1)

-3 3 -113 -3 I
-3 3 -1 '

3 -3 1
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and 1/ I-Pc 11/00 = 1.0. It is well known that 1/ 1- P II = 1 if and only if P is a
linear best approximation operator. Therefore, the matrix at (1) is a linear
best approximation operator in the standard orthonormal basis.

Remark. The fact that Pc is a linear best approximation operator in
Examples 3.2 and 3.3 could have been predicted (see Chalmers [6J,
Hallauer [llJ, Holmes [12J, Price and Cheney [17J) since IQI =
dim Y + 1.

EXAMPLE 3.3. The points Q = {- 3/4, -1/4, 1/4, 3/4} in the interval
[ - 1, 1J were chosen and the minimal projection P: [I (Q) ~ [1, X, x 2J 1Q
was computed. The result is the same matrix as in example 3.2 (!) but with
a different co-minimal projection,

[

19
1 3

P= 20 _~

3-3 1J11 9-3
9 11 3'

-3 3 19

11 Pili = 1.3. The co-minimal projection is

o
1/2
1/2
o

o 0 J1/2 -1/6
1/2 1/6
o 1

with II Pc 1/ 11 = 4/3. Note that II 1- Pc 11/1 = 1.0 so that Pc is also a linear best
approximation operator.
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